Tak ada dikotomi (pemisahan) ilmu pengetahuan (kecuali ilmu sihir).

Minggu, 11 November 2018

Metode Melengkapkan Kuadrat Sempurna



Untuk menemukan akar-akar persamaan kuadrat dengan cara melengkapkan kuadrat sempurna, syarat pertama adalah koefisien 𝑥² yaitu a harus sama dengan 1 agar mudah difaktorkan. Jika a bukan 1, bagilah persamaan oleh koefisien 𝑥² sehingga diperoleh a sama dengan 1. 
Jika di ruas kiri persamaan sudah muncul suku  

                                            𝑥² + 2(b/2)𝑥 + (b/2)² 

maka faktorkan menjadi (𝑥 + b/2)² . Yang mana pemfaktoran ini syah karena 

                              𝑥² + 2(b/2)𝑥 + (b/2)² = (𝑥 + b/2)²

 Selanjutnya langkah-langkah melengkapkan kuadrat sempurna adalah sebagai berikut:  

-Pada persamaan kuadrat 
                                                𝑥² + b𝑥 + c = 0 

kurangi ruas kiri dan ruas kanan oleh c (jika c < 0, ini akan menjadi penambahan)  

𝑥² + b𝑥 + c - c= 0 - c 
⇒𝑥² + b𝑥 = - c 

-Tambahkan suku (b/2)² pada ruas kiri dan ruas kanan 

𝑥² + b𝑥 + (b/2)² (b/2)² - c 

-Modifikasi suku b𝑥 menjadi 2(b/2)𝑥 

𝑥² + 2(b/2)𝑥 + (b/2)² (b/2)² - c 

-Ubah ruas kiri persamaan menjadi 

(𝑥 + b/2)² (b/2)² - c

-Ambil akar dari ruas kiri dan kanan 

Ambil akar dari ruas kiri dan kanan


-Kurangkan ruas kiri dan ruas kanan oleh b/2 (jika b < 0, ini akan menjadi penambahan) 

Melengkapkan Kuadrat Sempurna


Tanda ± artinya rumus menangani dua operasi yaitu penjumlahan dan pengurangan. 

-Akar 𝑥 diperoleh dengan mengambil tanda + 

Akar 𝑥₁


-Akar 𝑥₂ diperoleh dengan mengambil tanda - 

Akar 𝑥₂


Contoh 1. tentukan akar-akar persamaan 
a) 𝑥² - 5𝑥 + 4 = 0   
b) 𝑥² + 7𝑥 + 12 = 0  
c) 𝑥² - 6𝑥 - 7 = 0  
d) 𝑥² + 2𝑥 - 24 = 0  

 Jawab: 

 a

akar-akar 𝑥² - 5𝑥 + 4 = 0

b
akar-akar 𝑥² + 7𝑥 + 12 = 0
 c
akar-akar 𝑥² - 6𝑥 - 7 = 0

d
akar-akar  𝑥² + 2𝑥 - 24 = 0



Contoh 2. Tentukan akar-akar persamaan 
a) 2𝑥² - 7𝑥 + 3 = 0 
b) 6𝑥² - 5𝑥 - 6 = 0 

Jawab: 
a) Bagi persamaan dengan keofisien x^2 yaitu 2

akar-akar  2𝑥² - 7𝑥 + 3 = 0

b) Bagi persamaan dengan keofisien x^2 yaitu 6


akar-akar  6𝑥² - 5𝑥 - 6 = 0

18 komentar:

  1. Spot on with this write-up, I honestly believe that this site
    needs a lot more attention. I’ll probably be back again to read through more, thanks for the advice!

    BalasHapus
    Balasan
    1. You are welcome and thanks for visit my blog.

      Hapus
  2. Good article! We are linking to this great post on our website.

    Keep up the great writing.

    BalasHapus
    Balasan
    1. Thank You and gladly. May i know what is your site ?

      Hapus
  3. This site was... how do I say it? Relevant!! Finally I have
    found something which helped me. Thanks!

    BalasHapus
    Balasan
    1. You're welcome. Thanks for visit my blog.

      Hapus
  4. I love it whenever people come together and share views.

    Great website, continue the good work!

    BalasHapus
  5. Having read this I thought it was really informative.

    I appreciate you taking the time and effort to put this
    short article together. I once again find myself personally
    spending a significant amount of time both reading and leaving comments.
    But so what, it was still worth it!

    BalasHapus
  6. Good blog you have got here.. It’s hard to find good quality writing like yours nowadays.

    I truly appreciate individuals like you! Take care!!

    BalasHapus
  7. Oh my goodness! Incredible article dude! Many thanks, However I
    am having troubles with your RSS. I don’t
    know why I am unable to join it. Is there anyone else having the same RSS
    issues? Anyone who knows the solution can you kindly respond?
    Thanx!!

    BalasHapus
    Balasan
    1. You're welcome. Thanks for visit my blog.

      Hapus
  8. An outstanding share! I have just forwarded this onto a
    coworker who has been doing a little research on this.
    And he actually bought me dinner because I found it for him...
    lol. So let me reword this.... Thanks for the meal!! But yeah, thanx for spending some time
    to discuss this issue here on your blog.

    BalasHapus
    Balasan
    1. You're welcome. Thanks for visit my blog.

      Hapus
  9. Everything is very open with a really clear explanation of the challenges.
    It was truly informative. Your website is extremely helpful.
    Thanks for sharing!

    BalasHapus
    Balasan
    1. You're welcome. Thanks for visit my blog.

      Hapus

Tag Terpopuler